
GF as functional-logic language

Krasimir Angelov

Chalmers University of Technology

April 16, 2010

1 Introduction
Functional Programming in GF

Partial Definitions
Nondeterminism

Logic Programming in GF
Exhaustive Search
Random Search

2 Sketch of VM Design

3 Proof of Concept
Demo: N-Queens solver
Compilation via Lambda Prolog

4 Conclusion

1 Introduction
Functional Programming in GF

Partial Definitions
Nondeterminism

Logic Programming in GF
Exhaustive Search
Random Search

2 Sketch of VM Design

3 Proof of Concept
Demo: N-Queens solver
Compilation via Lambda Prolog

4 Conclusion

The Dichotomy in GF

Abstract Syntax
Defines the abstract ontological structure of the domain
Turing-complete functional language
Dependent types

Concrete Syntax
Defines a rendering of the abstract syntax into some language
Restricted recursion-free functional language
Simpe polymorphic types, but - overloading, records, subtyping

Note: In this talk we will focus on the abstract syntax

1 Introduction
Functional Programming in GF

Partial Definitions
Nondeterminism

Logic Programming in GF
Exhaustive Search
Random Search

2 Sketch of VM Design

3 Proof of Concept
Demo: N-Queens solver
Compilation via Lambda Prolog

4 Conclusion

Abstract Syntax

Turing-complete functional language:

abstract Nat = {

cat Nat;

data zero : Nat;

succ : Nat → Nat;

fun plus : Nat → Nat → Nat;

def plus zero n = n;

plus (succ m) n = succ (plus m n);

}

Concrete Syntax

As an example a natural number in ASCII is a
sequence of underscores.

concrete NatAscii of Nat = {

lincat Nat = Str ;

lin zero = ””;

succ x = ” ” ++ x ;

}

Note: We will use this in the N-Queens solver

Type System

The abstract syntax is a first-order type theory:

dependent types - (x : A)→ B x

implicit arguments - ({x , y} : A)→ B New!

inaccessible patterns - (∼ x) New!

Note: The last two were introduced only in the last months. This
features are borrowed from Agda but the syntax is changed to
avoid ambiguities.

Example: Dependent Types & Implicit Arguments

cat Category ;

Obj Category ;

Arrow ({c} : Category) (Obj c) (Obj c);

fun dom : ({c} : Category)→ ({x , y} : Obj c)→ Arrow x y → Obj c ;

def dom {x} {y} = x ;

fun codom : ({c} : Category)→ ({x , y} : Obj c)→ Arrow x y → Obj c ;

def codom {x} {y} = y ;

Example: Dependent Types & Inaccessible Patterns

cat EqAr ({c} : Category) ({x , y} : Obj c) (f , g : Arrow x y);

data eqRefl : ({c} : Category)

→ ({x , y} : Obj c)

→ (f : Arrow x y)

→ EqAr f f ;

fun eqSym : ({c} : Category)

→ ({x , y} : Obj c)

→ ({f , g} : Arrow x y)

→ EqAr f g

→ EqAr g f ;

def eqSym {∼ c} (eqRefl {c} f) = eqRefl {c} f ;

Why First-Order Type Theory?

Polymorphic types:

fun id : (A : Type)→ A→ A

are not allowed, because:

what is the lincat of A?

parsing with polymorphic types would not be tractable.

Note: this also allows us to use GF as efficient logic-based
programming language

Why First-Order Type Theory?

So far this looks like cut down version of Agda with
different syntax, but:

we allow partial definitions

we want to have nondeterministic computations in the future

Partial Definitions

We could have definition like this:

fun pred : Nat → Nat;

def pred (succ x) = x ;

then what is the value of pred zero?

Answer:

pred zero pred zero

This lets us to render sentences like this:

The predecessor of zero is not defined

Nondeterminism

Currently only in the concrete syntax:

lin don’t = ”don’t” | ”do not”;

, which helps to capture redundancies in NL.

Would be interesting in the abstract syntax:

fun call V = V (call by phone P | has name P);

, could handle semantic ambiguities.

Note: still not clear how this should interact with the dependent
types. Perhaps union types?

1 Introduction
Functional Programming in GF

Partial Definitions
Nondeterminism

Logic Programming in GF
Exhaustive Search
Random Search

2 Sketch of VM Design

3 Proof of Concept
Demo: N-Queens solver
Compilation via Lambda Prolog

4 Conclusion

Logic Programming in GF

Two of the fundamental functionalities in GF are:
Exhaustive search for terms of given type

Random search for term of given type

Note: since we have dependent types the set of all type signatures
is a first-order logic program

Exhaustive Search

The generate tree (gt) command generates all trees
of given category:

$ gt -cat=Nat
zero
succ zero
succ (succ zero)
. . .

Note: the term is the stack trace of a logic-based program

Random Search

The generate random (gt) command generates
random tree of given category:

$ gr -cat=Nat -number=3
succ (succ zero)
zero
succ zero
. . .

Note: running a randomized algorithm

Reconstruction of Parse Trees

Naive approach for semantic restrictions:

cat Kind ;

Switchable Kind ;

data light, fan : Kind ;

switchOn, switchOff : (k : Kind)→ Switchable k → Action k ;

lin switchOn k = ”switch on” ++k ;

Wouldn’t work (meta variables):
concrete : switch on the bank
abstract : switchOn bank ?

Solution - Try to prove:

Switchablep bank

1 Introduction
Functional Programming in GF

Partial Definitions
Nondeterminism

Logic Programming in GF
Exhaustive Search
Random Search

2 Sketch of VM Design

3 Proof of Concept
Demo: N-Queens solver
Compilation via Lambda Prolog

4 Conclusion

Dissection of the Dependent Types

Every nonfunction type could be dissected into a
simple type and a predicate:

x : T iff Tp(x) where Tp : Tt → o

The implementation of the predicate requires logic programming
and something more than Prolog i.e. Lambda Prolog

Introduction to Lambda Prolog

Lambda Prolog is an extension of Prolog where:

the Horn clauses are generalized to Hereditary Harrop
formulae

the programs are statically type checked

the object terms could have lambda abstractions

quantification over function symbols is allowed

Hereditary Harrop formulae

Just enough extensions to realize what we need in GF. We will see
examples later.

A-formulae (consequent)

any atom

A :−G

A, A

pi x\A

G-formulae (antecedent, goal)

any atom

G :−A

G , G

G ; G

pi x\G
sigma x\G

Translation to Lambda Prolog

e : C e1 . . . en ` Cp e e1 . . . en
C - category

∀j .∃ij .free(xij) xij : Tij ` Fj f x1 . . . xn : T ` F

f : (x1 : T1)→ . . . (xn : Tn)→ T ` pi x1 . . . xn\ F :−F1, . . . Fm

free(x) - x is not used anywhere in the type

Example - simple

GF

data zero : Nat;

succ : Nat → Nat;

Lambda Prolog

Natp zero.

pi X\ Natp (succ X) :− Natp X .

Example - high-order functions

GF

data f : (Nat → Nat)→ Nat;

Lambda Prolog

pi G\ Natp (f G) :− (pi X\ Natp (G X) :−Natp X).

Note: quantification over function i.e. G

Example - dependent types

GF

cat Vec Nat;

data nil : Vec zero;

cons : ({n} : Nat)→ Nat → Vec n→ Vec (succ n);

Lambda Prolog

Vecp nil zero.

pi X , L, N\ Vecp (cons N X L) (succ N) :−Natp X , Vecp L N.

Note: no Natp N because N is output variable in Vecp L N

Translation of Functions to Predicates - by example

GF

fun plus : Nat → Nat → Nat;

def plus zero n = n;

plus (succ m) n = succ (plus m n);

Lambda Prolog

exportdef plus Natt → Natt → Natt → o.

plus zero X X .

plus (succ X) Y (succ Z) :− plus X Y Z .

Problem: functions should be computed lazily

The encoding of functions as predicates could
model only strict functions, but:

SICStus Prolog has extensions that could emulate lazyness

The proof search is lazy by default in Curry

Two places to look for ...

Uncomputing

Let’s say that we have:

fun append : (m, n : Nat)→ Vec m→ Vec n→ Vec (plus m n);

Now try to prove:

Vecp (succ (succ zero))

Obviously for append you have to compute plus backwards i.e.
find m, n : Nat such that m + n = 2

Note: we will use this to solve NQueens

Type Checking as Prolog Program

We have two type checkers one in the compiler and
one in the interpreter.

The runtime type checker is actually running a Prolog program.
Example:

?− Vecp nil zero. ?− Vecp nil (cons zero).
yes no

Type Checking as Prolog Program

This doesn’t scale with meta-variables

Prolog uses narrowing:

?− Vecp (cons X nil) (succ zero).
X = zero
yes
X = succ zero
yes
. . .

The typecheckers in Agda and GF need residuation. We must
borrow the residuation strategy from Curry:

?− Vecp (cons X nil) (succ zero).
yes

1 Introduction
Functional Programming in GF

Partial Definitions
Nondeterminism

Logic Programming in GF
Exhaustive Search
Random Search

2 Sketch of VM Design

3 Proof of Concept
Demo: N-Queens solver
Compilation via Lambda Prolog

4 Conclusion

Proof of Concept

I have implemented source-to-source transformation
from GF to Lambda Prolog

The final goal is to integrate the virtual machine of Lambda Prolog
directly in GF

Demo: N-Queens solver

The n-queens puzzle is the
problem of placing n chess
queens on a n × n chessboard
such that none of them are able
to capture any other using the
standard chess queen’s moves.

The Chessboard Reduced to Vector

cat Matrix Nat;

Vec (s, l : Nat) [Nat];

data matrix : (s : Nat)→ Vec s s BaseNat → Matrix s;

s - the size of the chessboard

l - the length of the vector

[Nat] - the list of already occupied positions

Need Type-Level Inequality of Nat

cat NE (i , j : Nat);

data zNE : (i , j : Nat)→ NE i j → NE (succ i) (succ j);

lNE : (j : Nat)→ NE zero (succ j);

rNE : (j : Nat)→ NE (succ j) zero;

zNE - induction step

lNE , rNE - base cases

Satisfiability Condition

cat Sat Nat Nat [Nat];

data nilS : (j , d : Nat)→ Sat j d BaseNat;

consS : (i , j , d : Nat)→ (c : [Nat])

→ NE i j

→ NE i (plus d j)

→ NE (plus d i) j

→ Sat j (succ d) c

→ Sat j d (ConsNat i c);

j - the position that we check

i - the occupied position d lines above the current line

The Vector

data nilV : (s : Nat)→ (c : [Nat])→ Vec s zero c;

consV : (l , j , k : Nat)→
let s = succ (plus j k)

in (c : [Nat])→ Sat j (succ zero) c →
Vec s l (ConsNat j c)→ Vec s (succ l) c ;

j , k : Nat, such that j + 1 + k = s

Concrete Syntax for Vector and Matrix

lincat Matrix , Vec = Str ;

[Nat], Sat = {};

lin nilV = ””;

consV j k v = j ++”X” ++k ++”\n” ++v ;

matrix v = v ;

Compilation via Lambda Prolog

Generate Code:
$ gf -make -output-format=lambda prolog examples/nqueens/NQueensAscii.gf
Writing NQueens.pgf...
Writing NQueens.mod...
Writing NQueens.sig...

Compile:
$ tjcc NQueens.mod
$ tjlink NQueens.lpo
$ tjsim NQueens.lp

Run:

?− p Matrix (succ (succ (succ (succ zero))))

Linearize the result in GF:

l -unchars ”the tree generated from Lambda Prolog”

1 Introduction
Functional Programming in GF

Partial Definitions
Nondeterminism

Logic Programming in GF
Exhaustive Search
Random Search

2 Sketch of VM Design

3 Proof of Concept
Demo: N-Queens solver
Compilation via Lambda Prolog

4 Conclusion

Conclusion

The virtual machine of Lambda Prolog offers almost
everything that we need:

efficient backtracking

high-order pattern matching unification

hereditary Harrop formulae

but we need also:

laziness

residuation mode

	Introduction
	Functional Programming in GF
	Logic Programming in GF

	Sketch of VM Design
	Proof of Concept
	Demo: N-Queens solver
	Compilation via Lambda Prolog

	Conclusion

